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Abstract 

Wenjie and Wencben defined the sextet pattem and the super sextet and claimed to 
prove the one-to-one correspondence between the Kekulé and sextet patterns [1]. However, 
the set of sextet pattems of a polyhex G by their definition cannot be obtained unless we 
know all the Kekulé patterns of G. In this sense, their definition does not match the theory 
of the sextet polynomial. Here, the whole set of sextet pattems, including the super sextets 
of G, is defined from the properties of G, not from the Kekulé patterns. The one-to-one cor- 
respondence between the Kekulé and sextet pattems is thus proved. 

1. Introduction 

The sextet polynomial Be(x ) has been defined by Hosoya and'Yamaguchi as 
follows [2]: 

m 

Be(x)= ~., r(G,i)x i, (1) 
i=0 

where G is a graph representing a polycyclic aromatic hydrocarbon, r(G, i) is the 
number of ways in which i mutually resonant sextets are chosen from G, and m is the 
maximum number of i for which r(G, i) is non-zero. It was found that Clar's aromatic 
sextet theory [3] and the resonance theory are related mathematically through the 
following expressions [2]: 

B e ( l )  = K(G), (2) 

all hexagons 
« 

Ba(1)  = ~ .  K(G-(r) ) ,  (3) 
r 
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where K(G) is the number of Kekulé pättems for G, Bä(x) is the first derivaüve of Ba(x), 
G - (r) is the subgraph of G obtained by deleüng hexagon r and all their adjacent edges 
from G, and the summation rens over all the hexagonal rings in G. These mathematical 
relations can be proved by the existence of the one-to-one correspondence between the 
Kekul6 and sextet pattems [4]. So far, this correspondence has been proved only for 
"thin" polyhexes (fig. 1) [4]. For "fat" polyhexes (fig. 1), the theory of the sextet 
polynomial has included the ambiguity arising from the "super sextets" which was 
introduced without a proper definition in ref. [2] to keep (2) and (3). 

I U III 

IV V 

VII VlIl IX 

Fig. 1. Examples of holed polyhexes. Thin polyhexes (I, II, III, IV, and V) do 
not contain a coronene (VI/) skeleton, while fat polyhexes (VII, VI/I, and IX) 
do. Only graph VI is not a Kekulé polyhex. Among the Kekulé polyhexes, IV 
and V contain fixed edges, and they are not free polyhexes. 

For any polyhex, Wenjie and Wenchen proposed the definitions of the sextet 
pattem and super sextet and claimed to prove the one-to-one correspondence between 
these sextet pattems and Kekul6 pattems [1]. A sextet pattem by its definition is, 
however, derived from a Kekulé pattem. Hence, when we obtain the sextet polynomial 
of G, we taust draw all the Kekul6 pattems of G. Therefore, their approach is inappm- 
priate to the theory of the sextet polynomial. 

The aim of this paper is to reconstruct the theory of the sextet polynomial by 
explicitly def'ming the whole set of sextet pattems, including super sextets. Hefe, the 



N. Ohkami, Graph-theoretical analysis of the sextet polynomial 25 

sextet patterns are derived not from the Kekul6 patterns but from the properties of the 
polyhex. Then, the one-to-one correspondence betwe~n the Kekul6 and sextet patterns 
is proved in a way similar to that of ref. [4]. To perform this, polyhexes and their Kekulé 
pattems have to be examined in detail graph-theoretically. 

2. Terms and notations 

In the previous secüon, the terms "polyhex" and "fing" were introduced without 
definition. In this section, several terms and notations are defined explicitly to remove 
the ambiguity from the theory of the sextet polynomial. 

V(G): 

E(G): 

Oc(u, v): 
dG(1)): 

KG: 

K(G): 

Altemating path(cycle): 

Fixed edge: 

Free edge: 

G - (G'): 

G -  IG'I: 

the vertex set of graph G; 

the edge set of graph G; 

the distance between vertices u and v in graph G; 

the degree of vertex v in graph G; 

the set of all Kekulé pattems for graph G. In this paper, each 
Kekulé pattem is denoted by the lower case letter k; 

the number of Kekulé pattems of G; 

a path(cycle) whose edges are altemately single and double in 
a Kekul6 pattem. A k-alternating path(cycle) is an alternating 
path(cycle) in a Kekulé pattem k; 

an edge of graph G being double in any k in K o or an edge 
being single in any k in Kc; 

an edge being double not in all Kekul6 pattems, i.e. a free edge 
is an edge not being a fixed edge; 

subgraph of G obtained by deleting G' and its adjacent edges 
from G (fig. 2); 

subgraph of G - (G') obtained by deleting all the fixed edges 
from G - (G') (fig. 2). 

I I * I 

G' II II - ( G ' )  I I -  iG' ]  

Fig. 2. Subgraphs of graph G. Edges labeled by s and d in Il - (G') 
are fixed single and fixed double edges, respectively. 
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For a planar graph, an area of the plane bounded by edges and containing neither 
edges nor vertices is called a finite region [5]. 

Ring: a cycle that bounds a finite region; 

Resonant ring: a ring r of G is resonant if K(G - (r)) ~ O. When K(G - (r.) - (r:)) 4:0 
• t j 

for two mdependent rings r. and r), they are mutually resonant. Simi- 
larly, three of more mutually resonant rings can be defined if possible. 

In this paper, we adopt the definition of polyhexes by Gutman [6] as follows. 

Polyhex: 

Kekul6 polyhex: 

Free polyhex: 

let C a be a cycle on the two-dimensional hexagonal lattice. Then, a 
polyhex G is a graph consisting of all the vertices and the edges 
which either lie on C a or are enclosed by C a (fig. 1). 

a polyhex for which K(G)  ~ 0 (fig. 1). The set of all Kekul6 poly- 
hexes is denoted as KP. A vacant graph ~b is included in KP. When 
the sets of all the thin and fat polyhexes am denoted as TP and FP,  

respectively, K P  = TP + FP. 

a polyhex consisting only of free edges (fig. 1). The set of  all free 
polyhexes is denoted as FP. A vacant graph q5 is included in FP.  

The sextet polynomial for a polyhex that has no Kekul6 pattem is trivial. The 
sextet polynomial for a Kekulé polyhex G with fixed edges is given by the product of 
the sextet polynomials for the free polyhexes which are obtained by deleting fixed 
edges from G [1,3]• So, it is enough to consider sextet pattems and the sextet poly- 
nomial on_ly for free polyhexes. To simplify the later discussion, free polyhexes and 
their subgraphs am to be laid on the plane so that a pair of  parallel edges of a ring are 
vertical. Then, for these graphs and/or their Kekulé pattems, the following is defined: 

L-edge: 

R-edge: 

Proper cycle: 

Improper cycle: 

Proper(impmper) ring: 

R: 

the farthest left vertical edge of a cycle; 

the farthest right vertical edge of a cycle; 

an alternating cycle in which all R-edges are double and all L- 
edges are single (fig. 3); 

an alternating cycle in which all L-edges are double and all R- 
edges am single (fig. 3); 

a proper(improper) cycle that bounds a finite region (fig. 3); 

a set of rings mutually resonant in graph G. 

For a fat polyhex G, G - [R] may contain some components not belonging to F P  

and having "large" rings (fig. 4). This is the reason why the one-to-one correspondence 
was not proved for a general polyhex [4]. Here, such a graph that contains "large rings" 
is called a holed polyhex and is defined as follows: 
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~1 ~, II 2` 

18v-~7 16v--~5 147-/13 

1•1910 
12 

Fig. 3. Proper and improper cycles and rings. Each edge is labeled by a number 
as in the figure, and here, each cycle is denoted by the sequence of those 
numbers. Thus, (5,6,7,24,22,21) is a proper cycle and at the same time, a 
proper ring. Improper cycles are (1,2,3,19,17,18), (1,2, 3,4, 21,20,15,16,17,18), 
and (1,2, 3,4,21,22,24,8,9,10,11,12,13,14,15,16,17,18). The first one is also 
an improper ring. 

f 

VIII 

VIII- IR] 

IX-[R], R= {r2 r3} 
Fig. 4. Subgraphs not being free polyhexes. 

Holed polyhex: a connected subgraph of a free polyhex having at least one Kekul6 
pattem, at least one ring with a length larger than six, and consisting 
only of free edges. The set of all holed polyhexes is denoted as HP 
(fig. 5). 

Note here that for any R of a free polyhex G, each component of G - [R] is either 
a free or a holed polyhex. 
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Fig. 5. Examples of holed polyhexes. 

3. Prepara t ion 

Both free and holed polyhexes are bipartite graphs consisting only of free edges. 
The properties of these gräphs play an important role in a later discussion; therefore, first 
of  all, we will study these properties. Let us start with the theorem proved by Berge [7]. 

A matching M of G is a subset of  E(G) in which no two edges are adjacent to each 
other, and a maximum matching has the maximum number of edges among all the 
matchings of G. An unsaturated vertex is a vertex not incident with any edges in M. 

THEOREM 1 (Berge [7]) 

An edge e is free if and only if, for an arbitrary maximum matching M, edge e 
belongs to an even alternating path beginning at an unsaturated vertex or to an altemat- 
ing cycle. 

A perfect matching is a maximum matching with no unsaturated vertex. As is 
weh known, all the double edges in a Kekulé pattern constitute a perfect matching. 
Thus, it is clear that: 
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LEMMA 2 

Let G be a graph such that K(G) ¢ 0. Then, an edge e of  G is free if and only iL 
for an arbitrary k ~ Kc, edge e belongs to an altemating cycle. 

In a bipartite graph, vertices can be classified into two groups, say, starred and 
unstarred, so that no two vertices in the same group are adjacent. For a certain class of  
bipartite graphs, the following properties are proved. 

THEOREM 3 

Let G be a bipartite graph consisting only of  free edges, and K(G) ~ O. q~en, for 
any Kekulé pattem k ~ K a, there is an altemating path between any starred and 
unstarred vertices in which both end edges are double in k. 

Before proving this theorem, we should introduce the concept "altemating 
tree" [8]. An altemating tree J is defined as a tme  graph J each of whose edges joins an 
inner vertex to an outer vertex so that each inner vertex of  J meets exactly two edges 
o f J .  Therefore, an altemating tree is a bipartite graph whose vertices am classified into 
two gmups, inner and outer (fig. 6). 

? 
Fig. 6. An ahcwnating tree. o: outer vertex; o: inner vertex. 

Proof o f  theorem 3 

Let x be a starred vertex of  G. Construct an altemating tree J for k with the 
following procedure (fig. 7a): 
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(a) (b) (c) v (d) 

v ~- y " r  v 
x H x x x 

v 
(e) ( f )  (g) 

4# 

x 

(~) (J) (j') 

(h)  

Fig. 7. Construction of a spanning tree subgraph J +x.  (a) Kekulé pattern k of graph II and a starred vertex 
x is shown. Vertices labeled by * are starre& (b) By procedure 1, vertex y is determined. (c,d .. . . .  h) and (i) 
J is extended by repeating procedures 2 and 3 until J contains all the vertices of graph II exceptx, as shown 
in (i). (j) By procedure 4, one can obtain the spanning tree J + x. Ü') If  one chooses the outer vertices u in 
a different way, one may obtain another spanning tree, as in (j'). 

(1) There is an unstarred vertex y such that the edge (x, y) is double in k. Let J =  y, 
and y be an outer vertex (fig. 7b). 

(2) Choose an outer venex v from V(J). If them is a vertex u ( * x ) i n  G such 
that (u, v) e E(G) and u E VU),  extend J by VU)  = V(J) + u and E U )  = EU )  
+ (u, v) (fig. 7c, 7e, and 7g). Then go to (3). If there is not such a vertex u for 
any outer vertex (fig. 7i), go to (4). 

(3) By definition, da(u ) must be two. Extend J by V(J) = V(J) + w and E(J)  = E(J)  
+ (u, w), where the edge (u, w) is double in k (fig. 7d, 7f, and 7h). Go to (2). 

(4) Construct a tree subgraph J + x such that V(J + x) = V(J) + x and E U  + x) = E(J)  
+ (x, y) (fig. 7j). 

The obtained subgraph J + x is a spanning tree subgraph of G for the tollowing 
reason: Suppose that in a Kekulé pattem k we cannot extend J + x to a sp~mning tree 
of  G any longer. Let G a be a subgraph of G whose vertex set V(G) = VU + x) and whose 
edge set E (G)  includes all such edges in E(G) that connect two vertices belonging 
to V(J + x). Let G b be G - (G) ,  and E b be the set of  all the edges connecting G 
and G b. Each edge in E b is denoted as e i = (u r 1)) (i = 1; 2 . . . .  ), where u i e G and 
u. E G b. Note the following facts: (i) Each u i is an inner vertex for, if u i is outer, we can 
extend j by procedure (2). This means that all ui's are incident to double edges belonging 
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to E ( G )  (see procedure (3)). Therefore, all ei's are single. (il) In J, each edge joins an 
inner vertex to an outer vertex by definition, and the root vertex y is outer and unstarred. 
So, in J, all the inner vertices are starred and all the outer vertices are unstarred. 

Consider an edge e I = (u~, u~). From lemma 2, there is a k-altemating cycle C 
including e 1. In C, there must be an edge e,, = (uj, t)j) for which e.j ~ e., and e.le E,.ao If 
not, C cannot be a cycle. As noted above, the vertex u. is inner and starred. Then, the 

J 
length of  an altemating path between u~ and u. on C is even, and recall that both e 1 and 

J 
e. are single. Therefore, C cannot be an altemating cycle. This contradicts the assump- 
t(on that all the edges of  G a r e  free. 

Consequently, along the edges of  J + x one can find an altemating path from a 
starred vertex x to any unstarred vertex in wNch both end edges are double in k. • 

THEOREM 4 

Let G be a bipartite graph consisting only of  free edges, and K(G) ;e O. Then, all 
the rings of  G a r e  resonant, namely, for an arbitrary ring r in G, K(G - (r)) ~: O. 

Proof 

Suppose that for a ring r of  G, K(G - (r)) = 0. Ler G' = G - (r) and E r be the set 
of  all edges connecting G' and r. Consider a Kekulé pattem k e K c. In k, if all the edges 
in E are single, K(G - (r)) ;~ 0. Therefore, there are double edges in E .  Let us denote 

r r 
i t one of  these edges as e 1 = (u~, u~), where u~ ~ r and u~ ~ G" (chart 1). Denote the vertices 

vl =-ul ¢ * ...... Pl \ 

/ r,' v _ . \ _ _  ) / ~o v,.,-u,-,~---/, I 

Un =Vm-1 
Chart 1. 
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on r a s  u i (i = 1, 2, 3 . . . .  ), consecutively. One can choose a k-altemating path/'1 on r 
from u 1 to a vertex u that is incident on a double edge e = (u ,  u~) e E r (chart 1). If there 
is no such vertex u ,  the length of r is odd and this is contradictory to G being a bipartite 
graph. Let ul be staa'red. As both end edges o f P  1 are single, the length of P~ is odd. Then, 
u is unstarred. From theorem 3, there is a k-altemating path P2 in G from ul to u ,  both 
ends of which are double. 

No vertex in P2 is included in /'1 for the following reason: Let us 
denote P2 = (Vo(= ul), el, vl(= u~), e 2, v 2 . . . . .  v _~ (= u'), v ( =  u,,)). Suppose that 
v/(=ui) ~ ~ and v i ~ P2 (i = 1, 2 . . . . .  j -  1). As the edge e/= (v/_ v vj) should belong 
to E ,  it is single. Then, the distance between Vo(=Ul) and v~ on P2 is even, and vi(= ui) 
is starred. This means that the suffix i is odd and P2 includes a double edge 

(l).(= ui), v~ + 1(= u i_ 1))" So, any path from v. + 1(= u i_ 1) to v _ 1(= u') must come across 
the path (Vo(= ul), e 1, vl(= u~), e 2, v z . . . . .  1)._ ~, e~, 1).(= ui) ). This contradicts that P2 
is an altemaüng path (chart 1). Therefore, P~ + P2 constructs a k-alternating cycle C. 

Replace all the double edges on C into single and all the single edges into double. 
By repeating similar rcplacements, one can find a Kekul6 pattem in which all the edges 
belonging to E ra re  single. Then, K(G - (R)) ~e O. • 

4. Sextet pat terns  and super sextets 

Theorem 4 is the reason why the coefficient of  the term x of the sextet polynomial 
for a thin polyhex G is equal to the number of hexagonal rings of  G [1,6,9,10], and why 
the super sextet should be introduced for some rat polyhexes. 

Now, the set of  sextet patterns of a free polyhex G, S c, is defined as the set 
obtained by the following procedure: 

(1) Choose a set of  mutually resonant rings from G, and draw circles in these rings 
to obtain a sextet pattem. Let S c be the set of all these possible distinct sextet 
pattems. A sextet pattem with no circle taust be included in S G. This set can be 
obtained by considering combinations of resonant rings systematically (fig. 8a). 
Let A. be the set of  all aromatic rings in a sextet pattem s.. 

i « 

(2) Choose a sextet pattem s i ~ S a for which a component(s) of  G - [Ai] belongs to 
H P  (s i in fig. 9). If there is no such sextet pattem, go to (4). 

(3) Choose a ring r h of G - [Ai] which is not a ring in G. Obtain a sextet pattem s. 
by drawing circles on G in all rings and cycles belonging t o  A i and in the cycl~ 
corresponding to r h (sj in fig. 9). If sj ~ S a,  then add sj to S a.  Aj  = A i + % Go to 
(2). 

(4) End. 

A ring with a circle in the sextet pattem is called an aromatic ring. The explicit 
definition of a super sextet is no longer necessary, because the explicit defni t ion of the 
set of  sextet pattems is given. A super sextet is a cycle (not a ring) with a circle 
surrounding some mutually resonant rings and cycles in the sextet pattem (fig. 10). 
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~2~2 
~4~4 

2~ 
4 

2~2 

(a) 

(b) (c) 

Fig. 8. All the sextet pattems of VI[I. (a) Sextet patterns without super sextets. (b) Sextet 

pat tems with super sextets. (c) The number  in ring r i denotes K(G - (ri)). Bvm(X) = 1 + 12x 
+ 24x 2 + 12x 3 + x 4. Then, Bvm(1 ) = 50 and Bvm(1 ) = 100. Independently, we can obtain 
K(VIII) = 50 and ~ß_J~(G - (ri)) = 9 × 4 + 12 × 2 + 14 × 2 + 6 × 2 = 100 from (c). 
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vm- [A i] 

< 
i 

< f  

si k i 

vnl- [Aj ] 

< - ' f  

sj k i 
(a) (b) 

Fig. 9. Sextet patterns with and without a super sextet of VffI. (a) For s i, VIII - [Ai] is a holed 

polyhex. Thcn, a sextet pattern sj is added to SvH r Subgraph V I I / -  [Aj] is the vacant graph 

belonging to FP. (b) The one-to-one correspondence between s i, sj and k i, kj. 

X 
X 2 

X 2 

X X 2 

@ 
X~ ×2 

Fig. 10. Examples of sextet pattems with super sextets and their contributions to sextet polynomials. 
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Recall that the coefficients of the sextet polynomial, the r(G,  i)'s, have been 
defined as the number of  ways in which i mutually resonant sextets are chosen from G 
(eq. (1)), where the sextets obviously mean rings in the above discussion. Thus, the 
sextet polynomial is defined rigorously as follows. 

For a free polyhex G, the sextet polynomial Be(x )  is defined by eq. (1), where 
r(G,  i) is the number of  ways of  choosing i mutually resonant "rings" from G. r(G,  O) 

is defined as unity. Therefore, the sextet polynomial for the vacant graph ¢ is unity. 
From the above definition, the contribution of  s to the sextet polynomial is x i, 

where i is the number of aromaüc rings regardless of  the existence of  super sextets as 
in fig. 10. Therefore, the sextet polynomial can be understood as a counting polynomial 
of  sextet patterns classified by the number of  aromätic rings (fig. 8). 

5. Definition of a root Kekulé pattern and its properties 

The one-to-one correspondence between the Kekulé and sextet pattems will be 
proved in a way similar to that in ref. [4], where the root Kekul6 pattem played an 
important role. In ref. [4], the root Kekul6 pattern was defined only for free polyhexes. 
Here, the definition is modified as follows. 

F o r  a f r e e  or  ho led  po lyhex ,  a root  K e k u l é  pa t t e rn  is a K e k u l é  pa t t e rn  that  

has  no p r o p e r  rings., 

The uniqueness of a root Kekul6 pattem will be proved using the following 
theorems. 

THEOREM 5 

Let C be an altemating cycle in a Kekul6 pattem k of  a graph G ( F P  t3 HP) .  If 
an L-edge is single, C is a proper cycle, and if double, C is an improper cycle. If an 
R-edge of  C is single, C is an improper cycle, and if double, C is a proper cycle. 

P r o o f  

Part 1: Without loss of generality, one can assign to each of  all the vertices in 
G either a starred or an unstarred vertex so that each vertical edge in G connects 
an "upper" starred vertex with a "lower" unstarred one (chart 2). Let k ~ K c, and 
C = (v  0, e 1, v 1, e 2 . . . . .  vn - 1' e ,  v B be a k-alternating cycle. Suppose that e I = (1) 0, 1)1) 

is an L-edge of  C and that v 0 is unstarred. If e i = (1) i _ 1' 1)i) is an R-edge of  C, v i _ ~ is 
starred and v i is unstarred, for, if v i _ 1 is unstarred, C cannot be a cycle or e i cannot be 
an R-edge, as shown in chart 2. Since both v 0 and v i are unstarred, Dc(V o, vi)  is even. 
In C, therefore, when e~ (an L-edge) is single, e i (an R-edge) is double, and when e 1 is 
double, e i is single. 
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/ ~vi_, ~o~ 
v vi  

,V i 

Chart 2. 

=n~~ Part 2: Let e i = ( v  i _ ~, vi) and e. l' v:) be L-edges of C and both v i and 
v. be upper starred vertices. Note th~  i i~lylqex, two vertical edges carmot be 
a~tjacent. So, v. , and v. are connected by a path P. The length of P is odd, for v i l - i  j 
is tmstarred and v. is starred (chart 3). Then, if one of the L-edges of C is single (ör 
double), all the LJedges are single (or double). The same is true for R-edges. 

Parts 1 and 2 complete the proof. 

v~~* 

Chart 3. 

THEOREM 6 

In a Kekulé pattem k ~ K c (G ~ ( F P  u HP) ) ,  an arbitrary proper cycle contains 
a proper ring. 

P r o o f  

Let C be a proper cycle and denote C = ( v  o, v 1 . . . . .  v., v .÷ . . . . . .  v ,  Vo), where 
e~ = (v  o, v~) is a single L-edge and e)+l = (l)j, v)+ 1) is a doüblé R'-edge oßC (chart 4). 
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V i ,  * V i 

o,~~~~ ",, ~~, / \\, 

C h a r t  4. 

Let v o be starred. If C is a fing, the proof is trivial. Then, consider a case where C is 
not a ring. 

There is an edge e = ( v  i, Uo), where v i ~ C and u o ~ C (chart 4). 

Case  1, where v i is starred. In this case, u o is unstarrecl. From theorem 3, one 
can choose a k-alternating path P between u o and Voin which both end edges are double. 
All the vertices in C except v o and v cannot be included in P, for the following reason: 
Since both terminal edges of  P are double, edge (v  n, v o) is contained in P. Let us 
denote P by P= (u o, u 1, u 2 . . . . .  v ,  Vo). Suppose that there is such a vertex ui(= Um) 
that belongs to both P and C, and uj ~ C for j = 1, 2 . . . . .  i - 1. As u i is incident 
on a double edge on C, edge (u i _ 1, ui) is single. Therefore, the length of  an 
altemating path PI = (Uo' ul . . . . .  u i -  1' ui(= l ) ) )  is even. This means that ui(= vm) 
is unstarred. Then, a double edge (vm(= ui), v ÷ 1) taust be included in P. An 
altemating pathfrom o,ù+ 1(= ui+l) to o taust come across P~. This contradicüon 
ensures that (v  o, v 1 . . . . .  v i, u o) + P is an alternating cycle. Further, it is a proper cycle, 
for it includes a single L-edge (v  o, vl). 

Case  2, where v. is unstarred. In this case, u o is starred. From theorem 3, one can choose 
l 

a k-alternating path P between uù and v. in which both end edges are double. 
v. is incident on a double edge (v . , J .+ l ) .  Then, (v . ,V.+l)  is in P. A cycle 

J J J J l . . 
(uù, v., v . . . . . . .  v.) + P is an alternating cycle which can be proved in a s~mllar way 

U I I + 1  j 

to that of  case 1. Further, it is a proper cycle, for it includes a double R-edge 
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In both cases, the new cycle has a smaller length than that of C. By repeating the 
reduction of a pmpcr cycle according to cases 1 or 2, one can find a proper ring 
contained in the proper cycle. • 

THEOREM 7 

For any free and holed polyhex, there exists exactly one root Kekul6 pattem. 

Proof 

For any free and holed polyhex consisting of one cycle, theorem 7 is true. 
I~t  G be a graph belonging to FP t.) HP consisting of the smallest number of 

rings for which theorem 7 is not true, and e o be an L-edge of G. Let K s and K« be the 
sets of Kekul6 pattems in each of which e o is single and double, respectively (figs. 

10a, b). Obviously, K c = K s + Kd. 

Cc~re 1. Consider a Kekul6 pattem k belonging to K s. Since e o is free, there is an alter- 
nating cycle C containing e o. C is a proper cycle, from theorem 5. Then, k has a proper 
ring inside C, from theorem 6. Therefore, k cannot be the root Kekul6 pattem (fig. 1 la). 

(a) 

<d? 

(b) 

ko 

(c) 

Æ 

! 

G'= II- [eo:l ko 

K G ' 
N 

CO CO 

Fig. 11. Kekulé pattems of graphs II and II - [eo]. (a) Six Kekulé pattems in K a. (b) Three 
Kekulé pattems in K .  Among them, k o is the root Kekulé pattern of 1I. (c) Edges denoted by 
dashed lines are deleted from G to obtain G'. ' k o is the root Kekulé pattem of G'. 
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Case 2, Consider K d. Let G' = G - [%], and Eäe 1 be the set of  all edges being fixed in 
G - (%) and of e o. When we delete all the edges belonging to EdeI from every Kekulé 
pattem in K d, we can obtain K c, (fig. 1 lc). Since each component of G' is either a free 
or a holed polyhex containing a smaller number of rings than that of  G, there is exactly 
one root Kekul6 pattem for G', from the assumption. By tracing back e 0 and the deleted 
edges to the root Kekul6 pattern, one obtains exactly one root Kekul6 pattern k 0 of G 
(fig. 1 lb). Note here that all edges belonging to Ede I carmot contribute to a proper ring 
of k 0, for the following reason: Suppose that in k o there is a proper ring r/which contains 
the edge ef belonging to E~e 1. From theorem 5, all the L-edges of r i a r e  single. So, the 
double L-edge e 0 cannot be contained in r i .  Therefore, we can obtain a Kekulé pattern 
belonging to K d in which r i is an improper ring and all other edges are unchanged. This 
contradicts that e r is fixed in K«. 

Cases 1 and 2 complete the proof. 

6. One-to-one correspondence between the Kekulé and sextet patterns 

Here, mappings f and g are defined as follows. 

f :  K c --+ Sc: For any Kekul6 pattem k ~ K a, f ( k )  is determined by the following 
procedures (figs. 9b, 12): 

f l .  Let R be the set of  all rings which are proper rings in a Kekul6 pattem k ~ K «  
If all components of G - [R] belong to FP, go to f4.  Otherwise, put i = 1. 

f2 .  Let G i = G - [R]. If k has proper cycles on holes of G i, add those cycles to R. 
Otherwise, go to f4. 

f3 .  Put i = i + 1 and go to f2.  

f4.  For G, put a circle in each ring or cycle belonging to R. 

g • S c --+ Kc: For any sextet pattem s ~ S c g(s) is determined by the following 
procedures (figs. 9b, 12): 

gl .  For G, draw proper cycles in all the rings and cycles which have circles in s. 

g2. In the remaining part of G, draw a Kekulé pattem so that no proper ring aptmars. 

THEOREM 8 

Let G be a free polyhex, For any k ~ K c, there exists f(k) in S c, andf (k i )  ¢ f ( k j )  
for k. ~: k.. 

J 

P r o o f  

The definition of mutually resonant rings and theorem 4 ensures the existence of  

f (k i ) .  
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~f 

~f 

~f 

S 

~f 

Fig. 12. Examples of the one-to-one correspondence between 
the Kekulé and sextet pattems through mappings f and g. 
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For k i, let us denote R. as the set obtained by f l - f 4 .  Obviously, k i :/: k. for 
i 4:j. Therefore, from theorem ~/, there must be differences between R.and R. i fk.  ~ k.. 

l j t j 

This leads to the conclusion that f (k i)  g: f(kj) for k i :g kj. • 

THEOREM 9 

Let G be a free polyhex. For any s ~ S a, there exists g(s) in K a, a n d  g(si) ¢ g(~) 
for s. ;e s.. 

l j 

P r o o f  

From the definition of resonant rings and from theorem 4, K(G - [Ai]) ¢ 0, where 
A i is the set of  all rings and cycles having circles in s i. From theorem 7, procedure g2 
is always possible, i.e. there is g(si) in K c. From the definition, s i ¢: sj for i ¢ j. This 
means A i :/: Aj for s i ¢ s j .  Therefore, g ( s i )  :/: g(~)  for s i ¢ Sj. • 

Theorems 8 and 9 complete the proof of  the one-to-one correspondence between 
the Kekulé and sextet pattems and relation (2). Relation (3) is easily proved by (2) and 
the definition of the contribution of a sextet pattem to the sextet polynomial given 
above. 

7. Concluding remarks  

In this paper, the definition of  sextet pattems is derived from graph-theoretical 
properties of  free and holed polyhexes. So, for example, we can obtain fifty sextet 
pattems of VIII without the list of fifty Kekul6 pattems of  VIII (figs. 8a, b). It is 
straighfforward to obtain all the 980 sextet pattems of  Six. A sextet pattem of a graph 
G does not represent a Kekulé pattem, but represents some properties conceming 
perfect matchings of G. 

The definitions of  the sextet pattem and the sextet polynomial given above can 
be extended straightforwardly to holed polyhexes (fig. 13). The proof of  the one-to-one 
correspondence is also valid for holed polyhexes, because theorems 4 and 7 are tme for 
them. 

X IV IV' 
Fig. 13. Examples of sextet polynomials of holed and Kekulé polyhexes. The number 
in ring r/denotes K(G - (r/)). For a holed polyhex X, S x = 1 + 10x + 18x 2 + 10B + x 4, 
while K(X) = 40 and ZK(X - (r/)) = 80. Subgraph IV' of IV is obtained by delefing all 
the fixed edges from IV. It contains two components of free polyhexes. The sextet 
polynomial Siv(X) is given as the product of sextet polynomials for components of IV'. 
S I v ( X )  = ( 1  + 2 x )  2 = 1 + 4 x  + 4x 2. K(IV) = 9 and ZKOV - (ri)) = 8. 
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Kekulé polyhexes with fixed edges such as IV and V in fig. 1 are considered as 
sets of some independent free and holed polyhexes obtained by deleting all the fixed 
edges. Then, the combinations of resonant rings are given as the product of these free 
and holed polyhexes (fig. 13). This means that theorems 8 and 9 are true for any Kekul6 
polyhex. 

12 5 

XI XII XIII 

Fig. 14. Sextet polynomials for bipartite graphs consisting only of 
free edges and having Kekulé patterns. The number in a ring r/ 
denotes K(G - (r/)). For each case, relations (2) and (3) are valid. For 
a square lattice graph like XUI, see ref. [11]. Sxi(X) = 1 + 3x + x 2. 
K(-XI) = 5 and EK(XI - (ri)) = 5. Sxll(X ) = 1 + 6x + 2x 2. K(XII) = 9 
and ,~.K(XI] - (r.)) = 10. SxIH(X) = 1 + 10x + 16x 2 + 8x 3 + x  «. K(XIII) 
= 36 and ZK(XIII - (ri)) = 70. 

Further, sextet pattems and the sextet polynomial can be applied to a general 
bipartite graph consisting only of free edges and having Kekulé patterns from theorem 
4 (fig. 14). The proof of relations (2) and (3) for them will be completed if the 
dependency on the orientation of graphs in the above discussion is removed. 
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