GRAPH-THEORETICAL ANALYSIS OF THE SEXTET POLYNOMIAL. PROOF OF THE CORRESPONDENCE BETWEEN THE SEXTET PATTERNS AND KEKULÉ PATTERNS*

Noriko OHKAMI ${ }^{\text { }}$
Department of Chemistry, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112, Japan

Received by the publisher 16 October 1989

Abstract

Wenjie and Wenchen defined the sextet pattem and the super sextet and claimed to prove the one-to-one correspondence between the Kekule and sextet pattems [1]. However, the set of sextet patterns of a polyhex G by their definition cannot be obtained unless we know all the Kekulé patterns of G. In this sense, their definition does not match the theory of the sextet polynomial. Here, the whole set of sextet patterns, including the super sextets of G, is defined from the properties of G, not from the Kekulé patterns. The one-to-one correspondence between the Kekulé and sextet patterns is thus proved.

1. Introduction

The sextet polynomial $B_{G}(x)$ has been defined by Hosoya and 'Yamaguchi as follows [2]:

$$
\begin{equation*}
B_{G}(x)=\sum_{i=0}^{m} r(G, i) x^{i}, \tag{1}
\end{equation*}
$$

where G is a graph representing a polycyclic aromatic hydrocarbon, $r(G, i)$ is the number of ways in which i mutually resonant sextets are chosen from G, and m is the maximum number of i for which $r(G, i)$ is non-zero. It was found that Clar's aromatic sextet theory [3] and the resonance theory are related mathematically through the following expressions [2]:

$$
\begin{align*}
& B_{G}(1)=K(G), \tag{2}\\
& B_{G}^{\prime}(1)=\sum_{r}^{\text {all hexagons }} K(G-(r)), \tag{3}
\end{align*}
$$

[^0]where $K(G)$ is the number of Kekule patterns for $G, B_{G}^{\prime}(x)$ is the first derivative of $B_{G}(x)$, $G-(r)$ is the subgraph of G obtained by deleting hexagon r and all their adjacent edges from G, and the summation runs over all the hexagonal rings in G. These mathematical relations can be proved by the existence of the one-to-one correspondence between the Kekule and sextet patterns [4]. So far, this correspondence has been proved only for "thin" polyhexes (fig. 1) [4]. For "fat" polyhexes (fig. 1), the theory of the sextet polynomial has included the ambiguity arising from the "super sextets" which was introduced without a proper definition in ref. [2] to keep (2) and (3).

I

IV

VII

II

V

VIII

III

VI

IX

Fig. 1. Examples of holed polyhexes. Thin polyhexes (I, II, III, IV, and V) do not contain a coronene (VII) skeleton, while fat polyhexes (VII, VIII, and IX) do. Only graph VI is not a Kekulé polyhex. Among the Kekulé polyhexes, IV and V contain fixed edges, and they are not free polyhexes.

For any polyhex, Wenjie and Wenchen proposed the definitions of the sextet pattern and super sextet and claimed to prove the one-to-one correspondence between these sextet patterns and Kekulé patterns [1]. A sextet pattern by its definition is, however, derived from a Kekule pattern. Hence, when we obtain the sextet polynomial of G, we must draw all the Kekulé patterns of G. Therefore, their approach is inappropriate to the theory of the sextet polynomial.

The aim of this paper is to reconstruct the theory of the sextet polynomial by explicitly defining the whole set of sextet patterns, including super sextets. Here, the
sextet patterns are derived not from the Kekule patterns but from the properties of the polyhex. Then, the one-to-one correspondence between the Kekule and sextet patterns is proved in a way similar to that of ref. [4]. To perform this, polyhexes and their Kekulé pattems have to be examined in detail graph-theoretically.

2. Terms and notations

In the previous section, the terms "polyhex" and "ring" were introduced without definition. In this section, several terms and notations are defined explicitly to remove the ambiguity from the theory of the sextet polynomial.
$V(G)$:
$E(G):$
$D_{G}(u, v)$:
$d_{G}(v):$
K_{G} :
$K(G):$
the vertex set of graph G;
the edge set of graph G;
the distance between vertices u and v in graph G;
the degree of vertex v in graph G;
the set of all Kekulé patterns for graph G. In this paper, each Kekule pattern is denoted by the lower case letter k;

Alternating path(cycle): a path(cycle) whose edges are altemately single and double in a Kekulé pattern. A k-alternating path(cycle) is an alternating path(cycle) in a Kekulé pattern k;
Fixed edge:

Free edge:
$G-\left(G^{\prime}\right):$
$G-\left[G^{\prime}\right]:$
an edge of graph G being double in any k in K_{G} or an edge being single in any k in K_{G};
an edge being double not in all Kekulé patterns, i.e. a free edge is an edge not being a fixed edge;
subgraph of G obtained by deleting G^{\prime} and its adjacent edges from G (fig. 2);
subgraph of $G-\left(G^{\prime}\right)$ obtained by deleting all the fixed edges from $G-\left(G^{\prime}\right)$ (fig. 2).

II

II - (G')

II-[G']

Fig. 2. Subgraphs of graph G. Edges labeled by s and d in $\Pi-\left(G^{\prime}\right)$ are fixed single and fixed double edges, respectively.

For a planar graph, an area of the plane bounded by edges and containing neither edges nor vertices is called a finite region [5].

Ring: a cycle that bounds a finite region;
Resonant ring: a ring r of G is resonant if $K(G-(r)) \neq 0$. When $K\left(G-\left(r_{i}\right)-\left(r_{j}\right)\right) \neq 0$ for two independent rings r_{i} and r_{j}, they are mutually resonant. Similarly, three of more mutually resonant rings can be defined if possible.

In this paper, we adopt the definition of polyhexes by Gutman [6] as follows.
Polyhex: let C_{G} be a cycle on the two-dimensional hexagonal lattice. Then, a polyhex G is a graph consisting of all the vertices and the edges which either lie on C_{G} or are enclosed by C_{G} (fig. 1).
Kekulé polyhex: a polyhex for which $K(G) \neq 0$ (fig. 1). The set of all Kekulé polyhexes is denoted as $K P$. A vacant graph ϕ is included in $K P$. When the sets of all the thin and fat polyhexes are denoted as $T P$ and $F P$, respectively, $K P=T P+F P$.
Free polyhex: a polyhex consisting only of free edges (fig. 1). The set of all free polyhexes is denoted as $F P$. A vacant graph ϕ is included in $F P$.

The sextet polynomial for a polyhex that has no Kekule pattern is trivial. The sextet polynomial for a Kekule polyhex G with fixed edges is given by the product of the sextet polynomials for the free polyhexes which are obtained by deleting fixed edges from $G[1,3]$. So, it is enough to consider sextet patterns and the sextet polynomial only for free polyhexes. To simplify the later discussion, free polyhexes and their subgraphs are to be laid on the plane so that a pair of parallel edges of a ring are vertical. Then, for these graphs and/or their Kekule patterns, the following is defined:

L-edge:
R-edge:
Proper cycle:

Improper cycle:

Proper(improper) ring: R :
the farthest left vertical edge of a cycle;
the farthest right vertical edge of a cycle;
an alternating cycle in which all R-edges are double and all Ledges are single (fig. 3);
an alternating cycle in which all L-edges are double and all Redges are single (fig. 3);
a proper(improper) cycle that bounds a finite region (fig. 3); a set of rings mutually resonant in graph G.

For a fat polyhex $G, G-[R]$ may contain some components not belonging to $F P$ and having "large" rings (fig. 4). This is the reason why the one-to-one correspondence was not proved for a general polyhex [4]. Here, such a graph that contains "large rings" is called a holed polyhex and is defined as follows:

Fig. 3. Proper and improper cycles and rings. Each edge is labeled by a number as in the figure, and here, each cycle is denoted by the sequence of those numbers. Thus, $(5,6,7,24,22,21)$ is a proper cycle and at the same time, a proper ring. Improper cycles are ($1,2,3,19,17,18$) ($1,2,3,4,21,20,15,16,17,18$), and ($1,2,3,4,21,22,24,8,9,10,11,12,13,14,15,16,17,18$). The first one is also an improper ring.

VIII

VIII - [R]
$R=\left\{r_{1}\right\}$

$I X-[R], R=\left\{r_{2}, r_{3}\right\}$

Fig. 4. Subgraphs not being free polyhexes.

Holed polyhex: a connected subgraph of a free polyhex having at least one Kekule pattern, at least one ring with a length larger than six, and consisting only of free edges. The set of all holed polyhexes is denoted as $H P$ (fig. 5).

Note here that for any R of a free polyhex G, each component of $G-[R]$ is either a free or a holed polyhex.

Fig. 5. Examples of holed polyhexes.

3. Preparation

Both free and holed polyhexes are bipartite graphs consisting only of free edges. The properties of these graphs play an important role in a later discussion; therefore, first of all, we will study these properties. Let us start with the theorem proved by Berge [7].

A matching M of G is a subset of $E(G)$ in which no two edges are adjacent to each other, and a maximum matching has the maximum number of edges among all the matchings of G. An unsaturated vertex is a vertex not incident with any edges in M.

THEOREM 1 (Berge [7])

An edge e is free if and only if, for an arbitrary maximum matching M, edge e belongs to an even alternating path beginning at an unsaturated vertex or to an alternating cycle.

A perfect matching is a maximum matching with no unsaturated vertex. As is well known, all the double edges in a Kekule pattern constitute a perfect matching. Thus, it is clear that:

LEMMA 2
Let G be a graph such that $K(G) \neq 0$. Then, an edge e of G is free if and only if, for an arbitrary $k \in K_{G}$, edge e belongs to an alternating cycle.

In a bipartite graph, vertices can be classified into two groups, say, starred and unstarred, so that no two vertices in the same group are adjacent. For a certain class of bipartite graphs, the following properties are proved.

THEOREM 3

Let G be a bipartite graph consisting only of free edges, and $K(G) \neq 0$. Then, for any Kekule pattern $k \in K_{G}$, there is an altemating path between any starred and unstarred vertices in which both end edges are double in k.

Before proving this theorem, we should introduce the concept "alternating tree" [8]. An alternating tree J is defined as a tree graph J each of whose edges joins an inner vertex to an outer vertex so that each inner vertex of J meets exactly two edges of J. Therefore, an alternating tree is a bipartite graph whose vertices are classified into two groups, inner and outer (fig. 6).

Fig. 6. An alternating tree. o: outer vertex; \bullet : inner vertex.

Proof of theorem 3

Let x be a starred vertex of G. Construct an alternating tree J for k with the following procedure (fig. 7a):

(a)
(b)
(c)
(d)

(i)
(j)
(${ }^{\prime}$)

Fig. 7. Construction of a spanning tree subgraph $J+x$. (a) Kekulé pattern k of graph II and a starred vertex x is shown. Vertices labeled by * are starred. (b) By procedure 1 , vertex y is determined. (c, d, .., h) and (i) J is extended by repeating procedures 2 and 3 until J contains all the vertices of graph II except x, as shown in (i). (j) By procedure 4, one can obtain the spanning tree $J+x$. (j') If one chooses the outer vertices u in a different way, one may obtain another spanning tree, as in (j^{\prime}).
(1) There is an unstarred vertex y such that the edge (x, y) is double in k. Let $J=y$, and y be an outer vertex (fig. 7b).
(2) Choose an outer vertex v from $V(J)$. If there is a vertex $u(\neq x)$ in G such that $(u, v) \in E(G)$ and $u \notin V(J)$, extend J by $V(J)=V(J)+u$ and $E(J)=E(J)$ $+(u, v)($ fig. $7 \mathrm{c}, 7 \mathrm{e}$, and 7 g$)$. Then go to (3). If there is not such a vertex u for any outer vertex (fig. 7i), go to (4).
(3) By definition, $d_{J}(u)$ must be two. Extend J by $V(J)=V(J)+w$ and $E(J)=E(J)$ $+(u, w)$, where the edge (u, w) is double in k (fig. $7 \mathrm{~d}, 7 \mathrm{f}$, and 7 h). Go to (2).
(4) Construct a tree subgraph $J+x$ such that $V(J+x)=V(J)+x$ and $E(J+x)=E(J)$ $+(x, y)$ (fig. 7 j).

The obtained subgraph $J+x$ is a spanning tree subgraph of G for the following reason: Suppose that in a Kekule pattern k we cannot extend $J+x$ to a spanning tree of G any longer. Let G_{a} be a subgraph of G whose vertex set $V\left(G_{a}\right)=V(J+x)$ and whose edge set $E\left(G_{a}\right)$ includes all such edges in $E(G)$ that connect two vertices belonging to $V(J+x)$. Let G_{b} be $G-\left(G_{a}\right)$, and $E_{a b}$ be the set of all the edges connecting G_{a} and G_{b}. Each edge in $E_{a b}$ is denoted as $e_{i}=\left(u_{i}, v_{i}\right)(i=1,2, \ldots)$, where $u_{i} \in G_{a}$ and $v_{i} \in G_{b}$. Note the following facts: (i) Each u_{i} is an inner vertex for, if u_{i} is outer, we can extend j by procedure (2). This means that all u_{i} 's are incident to double edges belonging
to $E\left(G_{a}\right)$ (see procedure (3)). Therefore, all $e_{i}^{\text {'s are single. (ii) In } J \text {, each edge joins an }}$ inner vertex to an outer vertex by definition, and the root vertex y is outer and unstarred. So, in J, all the inner vertices are starred and all the outer vertices are unstarred.

Consider an edge $e_{1}=\left(u_{1}, v_{1}\right)$. From lemma 2 , there is a k-alternating cycle C including e_{1}. In C, there must be an edge $e_{j}=\left(u_{j}, v_{j}\right)$ for which $e_{j} \neq e_{1}$ and $e_{j} \in E_{a b}$. If not, C cannot be a cycle. As noted above, the vertex u_{j} is inner and starred. Then, the length of an alternating path between u_{1} and u_{j} on C is even, and recall that both e_{1} and e_{j} are single. Therefore, C cannot be an alternating cycle. This contradicts the assumption that all the edges of G are free.

Consequently, along the edges of $J+x$ one can find an alternating path from a starred vertex x to any unstarred vertex in which both end edges are double in k.

THEOREM 4

Let G be a bipartite graph consisting only of free edges, and $K(G) \neq 0$. Then, all the rings of G are resonant, namely, for an arbitrary ring r in $G, K(G-(r)) \neq 0$.

Proof

Suppose that for a ring r of $G, K(G-(r))=0$. Let $G^{\prime}=G-(r)$ and E_{r} be the set of all edges connecting G^{\prime} and r. Consider a Kekulé pattern $k \in K_{G}$. In k, if all the edges in E_{r} are single, $K(G-(r)) \neq 0$. Therefore, there are double edges in E_{r}. Let us denote one of these edges as $e_{1}=\left(u_{1}, u_{1}^{\prime}\right)$, where $u_{1} \in r$ and $u_{1}^{\prime} \in G^{\prime}$ (chart 1). Denote the vertices

Chart 1.
on r as $u_{i}(i=1,2,3, \ldots)$, consecutively. One can choose a k-alternating path P_{1} on r from u_{1} to a vertex u_{n} that is incident on a double edge $e_{n}=\left(u_{n}, u_{n}^{\prime}\right) \in E_{r}$ (chart 1). If there is no such vertex u_{n}, the length of r is odd and this is contradictory to G being a bipartite graph. Let u_{1} be starred. As both end edges of P_{1} are single, the length of P_{1} is odd. Then, u_{n} is unstarred. From theorem 3, there is a k-alternating path P_{2} in G from u_{1} to u_{n}, both ends of which are double.

No vertex in P_{2} is included in P_{1} for the following reason: Let us denote $P_{2}=\left(v_{0}\left(=u_{1}\right), e_{1}, v_{1}\left(=u_{1}^{\prime}\right), e_{2}, v_{2}, \ldots, v_{m-1}\left(=u_{n}^{\prime}\right), v_{m}\left(=u_{n}\right)\right)$. Suppose that $v_{j}\left(=u_{i}\right) \in P_{2}$ and $v_{i} \notin P_{2}(i=1,2, \ldots, j-1)$. As the edge $e_{j}=\left(v_{j-1}, v_{j}\right)$ should belong to E_{r}, it is single. Then, the distance between $v_{0}\left(=u_{1}\right)$ and v_{j} on P_{2} is even, and $v_{j}\left(=u_{i}\right)$ is starred. This means that the suffix i is odd and P_{2} includes a double edge $\left(v_{j}\left(=u_{i}\right), v_{j+1}\left(=u_{i-1}\right)\right.$). So, any path from $v_{j+1}\left(=u_{i-1}\right)$ to $v_{m-1}\left(=u_{n}^{\prime}\right)$ must come across the path $\left(v_{0}\left(=u_{1}\right), e_{1}, v_{1}\left(=u_{1}^{\prime}\right), e_{2}, v_{2}, \ldots, v_{j-1}, e_{j}, v_{j}\left(=u_{i}\right)\right)$. This contradicts that P_{2} is an alternating path (chart 1). Therefore, $P_{1}+P_{2}$ constructs a k-alternating cycle C.

Replace all the double edges on C into single and all the single edges into double. By repeating similar replacements, one can find a Kekulé pattern in which all the edges belonging to E_{r} are single. Then, $K(G-(R)) \neq 0$.

4. Sextet patterns and super sextets

Theorem 4 is the reason why the coefficient of the term x of the sextet polynomial for a thin polyhex G is equal to the number of hexagonal rings of $G[1,6,9,10]$, and why the super sextet should be introduced for some fat polyhexes.

Now, the set of sextet patterns of a free polyhex G, S_{G}, is defined as the set obtained by the following procedure:
(1) Choose a set of mutually resonant rings from G, and draw circles in these rings to obtain a sextet pattern. Let S_{G} be the set of all these possible distinct sextet patterns. A sextet pattern with no circle must be included in S_{G}. This set can be obtained by considering combinations of resonant rings systematically (fig. 8a). Let A_{i} be the set of all aromatic rings in a sextet pattern s_{i}.
(2) Choose a sextet pattern $s_{i} \in S_{G}$ for which a component(s) of $G-\left[A_{i}\right]$ belongs to $H P$ (s_{i} in fig. 9). If there is no such sextet pattern, go to (4).
(3) Choose a ring r_{h} of $G-\left[A_{i}\right]$ which is not a ring in G. Obtain a sextet pattern s_{j} by drawing circles on G in all rings and cycles belonging to A_{i} and in the cycle corresponding to r_{h} (s_{j} in fig. 9). If $s_{j} \notin S_{G}$, then add s_{j} to $S_{G} . A_{j}=A_{i}+r_{h}$ Go to (2).
(4) End.

A ring with a circle in the sextet pattern is called an aromatic ring. The explicit definition of a super sextet is no longer necessary, because the explicit definition of the set of sextet patterns is given. A super sextet is a cycle (not a ring) with a circle surrounding some mutually resonant rings and cycles in the sextet pattem (fig. 10).

(a)

(b)

(c)

Fig. 8. All the sextet patterns of VIII. (a) Sextet patterns without super sextets. (b) Sextet patterns with super sextets. (c) The number in ring r_{i} denotes $K\left(G-\left(r_{i}\right)\right) . B_{\mathrm{vII}}(x)=1+12 x$ $+24 x^{2}+12 x^{3}+x^{4}$. Then, $B_{\mathrm{vIII}}(1)=50$ and $B_{\mathrm{viII}^{\prime}}^{\prime}(1)=100$. Independently, we can obtain $K(\mathrm{VIII})=50$ and $\Sigma K\left(G-\left(r_{i}\right)\right)=9 \times 4+12 \times 2+14 \times 2+6 \times 2=100$ from (c).

VIII-[$\left.A_{j}\right]$
(a)
(b)

Fig. 9. Sextet patterns with and without a super sextet of VIII. (a) For s_{i}, VIII - [$\left.A_{i}\right]$ is a holed polyhex. Then, a sextet pattern s_{j} is added to $S_{\text {viII }}$. Subgraph VIII - $\left[A_{j}\right]$ is the vacant graph belonging to $F P$. (b) The one-to-one correspondence between s_{i}, s_{j} and k_{i}, k_{j}

Fig. 10. Examples of sextet patterns with super sextets and their contributions to sextet polynomials.

Recall that the coefficients of the sextet polynomial, the $r(G, i)$'s, have been defined as the number of ways in which i mutually resonant sextets are chosen from G (eq. (1)), where the sextets obviously mean rings in the above discussion. Thus, the sextet polynomial is defined rigorously as follows.

For a free polyhex G, the sextet polynomial $B_{G}(x)$ is defined by eq. (1), where $r(G, i)$ is the number of ways of choosing i mutually resonant "rings" from $G . r(G, 0)$ is defined as unity. Therefore, the sextet polynomial for the vacant graph ϕ is unity.

From the above definition, the contribution of s to the sextet polynomial is x^{i}, where i is the number of aromatic rings regardless of the existence of super sextets as in fig. 10. Therefore, the sextet polynomial can be understood as a counting polynomial of sextet patterns classified by the number of aromatic rings (fig. 8).

5. Definition of a root Kekulé pattern and its properties

The one-to-one correspondence between the Kekule and sextet patterns will be proved in a way similar to that in ref. [4], where the root Kekule pattern played an important role. In ref. [4], the root Kekule pattern was defined only for free polyhexes. Here, the definition is modified as follows.

For a free or holed polyhex, a root Kekulé pattern is a Kekulé pattern that has no proper rings.

The uniqueness of a root Kekulé pattern will be proved using the following theorems.

THEOREM 5

Let C be an alternating cycle in a Kekulé pattern k of a graph $G(F P \cup H P)$. If an L-edge is single, C is a proper cycle, and if double, C is an improper cycle. If an R-edge of C is single, C is an improper cycle, and if double, C is a proper cycle.

Proof

Part 1: Without loss of generality, one can assign to each of all the vertices in G either a starred or an unstarred vertex so that each vertical edge in G connects an "upper" starred vertex with a "lower" unstarred one (chart 2). Let $k \in K_{G}$, and $C=\left(v_{0}, e_{1}, v_{1}, e_{2}, \ldots, v_{n-1}, e_{n}, v_{0}\right)$ be a k-alternating cycle. Suppose that $e_{1}=\left(v_{0}, v_{1}\right)$ is an L-edge of C and that v_{0} is unstarred. If $e_{i}=\left(v_{i-1}, v_{i}\right)$ is an R-edge of C, v_{i-1} is starred and v_{i} is unstarred, for, if v_{i-1} is unstarred, C cannot be a cycle or e_{i} cannot be an R-edge, as shown in chart 2 . Since both v_{0} and v_{i} are unstarred, $D_{C}\left(v_{0}, v_{i}\right)$ is even. In C, therefore, when e_{1} (an L-edge) is single, e_{i} (an R-edge) is double, and when e_{1} is double, e_{i} is single.

Chart 2.

Part 2: Let $e_{i}=\left(v_{i-1}, v_{i}\right)$ and $e_{j}=\left(v_{j-1}, v_{j}\right)$ be L-edges of C and both v_{i} and v_{j} be upper starred vertices. Note that in a polyhex, two vertical edges cannot be adjacent. So, v_{i-1} and v_{j} are connected by a path P. The length of P is odd, for v_{i-1} is unstarred and v_{j} is starred (chart 3). Then, if one of the L-edges of C is single (or double), all the L-edges are single (or double). The same is true for R-edges.

Parts 1 and 2 complete the proof.

Chart 3.

THEOREM 6

In a Kekulé pattern $k \in K_{G}(G \in(F P \cup H P)$), an arbitrary proper cycle contains a proper ring.

Proof

Let C be a proper cycle and denote $C=\left(v_{0}, v_{1}, \ldots, v_{j}, v_{j+1}, \ldots, v_{n}, v_{0}\right)$, where $e_{1}=\left(v_{0}, v_{1}\right)$ is a single L-edge and $e_{j+1}=\left(v_{j}, v_{j+1}\right)$ is a double R-edge of C (chart 4).

Chart 4.

Let v_{0} be starred. If C is a ring, the proof is trivial. Then, consider a case where C is not a ring.

There is an edge $e=\left(v_{i}, u_{0}\right)$, where $v_{i} \in C$ and $u_{0} \notin C$ (chart 4).
Case 1, where v_{i} is starred. In this case, u_{0} is unstarred. From theorem 3, one can choose a k-alternating path P between u_{0} and v_{0} in which both end edges are double. All the vertices in C except v_{0} and v_{n} cannot be included in P, for the following reason: Since both terminal edges of P are double, edge $\left(v_{n}, v_{0}\right)$ is contained in P. Let us denote P by $P=\left(u_{0}, u_{1}, u_{2}, \ldots, v_{n}, v_{0}\right)$. Suppose that there is such a vertex $u_{i}\left(=v_{m}\right)$ that belongs to both P and C, and $u_{j} \notin C$ for $j=1,2, \ldots, i-1$. As u_{i} is incident on a double edge on C, edge $\left(u_{i-1}, u_{i}\right)$ is single. Therefore, the length of an alternating path $P_{1}=\left(u_{0}, u_{1}, \ldots, u_{i-1}, u_{i}\left(=v_{m}\right)\right)$ is even. This means that $u_{i}\left(=v_{m}\right)$ is unstarred. Then, a double edge $\left(v_{m}\left(=u_{i}\right), v_{m+1}\right)$ must be included in P. An altemating path from $v_{m+1}\left(=u_{i+1}\right)$ to v_{n} must come across P_{1}. This contradiction ensures that $\left(v_{0}, v_{1}, \ldots, v_{i}, u_{0}\right)+P$ is an alternating cycle. Further, it is a proper cycle, for it includes a single L-edge (v_{0}, v_{1}).
Case 2, where v_{i} is unstarred. In this case, u_{0} is starred. From theorem 3, one can choose a k-alternating path P between u_{0} and v_{j} in which both end edges are double. v_{j} is incident on a double edge $\left(v_{j}, v_{j+1}\right)$. Then, $\left(v_{j}, v_{j+1}\right)$ is in P. A cycle $\left(u_{0}, v_{i}, v_{i+1}, \ldots, v_{j}\right)+P$ is an alternating cycle which can be proved in a similar way to that of case 1. Further, it is a proper cycle, for it includes a double R-edge $\left(v_{j}, v_{j+1}\right)$.

In both cases, the new cycle has a smaller length than that of C. By repeating the reduction of a proper cycle according to cases 1 or 2 , one can find a proper ring contained in the proper cycle.

THEOREM 7

For any free and holed polyhex, there exists exactly one root Kekule pattern.

Proof

For any free and holed polyhex consisting of one cycle, theorem 7 is true.
Let G be a graph belonging to $F P \cup H P$ consisting of the smallest number of rings for which theorem 7 is not true, and e_{0} be an L-edge of G. Let K_{s} and K_{d} be the sets of Kekule pattems in each of which e_{0} is single and double, respectively (figs. 10a,b). Obviously, $K_{G}=K_{s}+K_{d}$.
Case 1. Consider a Kekule pattern k belonging to K_{s}. Since e_{0} is free, there is an alternating cycle C containing e_{0}. C is a proper cycle, from theorem 5 . Then, k has a proper ring inside C, from theorem 6 . Therefore, k cannot be the root Kekule pattem (fig. 11a).
(a)

(b)

k_{0}

(c)

$$
G^{\prime}=\text { II }-\left[e_{0}\right]
$$

k_{0}^{\prime}

Fig. 11. Kekulé patterns of graphs II and II - [e $\left.e_{0}\right]$. (a) Six Kekulé patterns in K_{d}. (b) Three Kekulé patterns in K_{s}. Among them, k_{0} is the root Kekule pattern of II. (c) Edges denoted by dashed lines are deleted from G to obtain $G^{\prime} . k_{0}^{\prime}$ is the root Kekulé pattern of G^{\prime}.

Case 2. Consider K_{d}. Let $G^{\prime}=G-\left[e_{0}\right]$, and $E_{\text {del }}$ be the set of all edges being fixed in $G-\left(e_{0}\right)$ and of e_{0}. When we delete all the edges belonging to $E_{\text {del }}$ from every Kekulé pattern in K_{d}, we can obtain $K_{G^{\prime}}$ (fig. 11c). Since each component of G^{\prime} is either a free or a holed polyhex containing a smaller number of rings than that of G, there is exactly one root Kekule pattem for G^{\prime}, from the assumption. By tracing back e_{0} and the deleted edges to the root Kekulé pattern, one obtains exactly one root Kekulé pattern k_{0} of G (fig. 11b). Note here that all edges belonging to $E_{\text {del }}$ cannot contribute to a proper ring of k_{0}, for the following reason: Suppose that in k_{0} there is a proper ring r_{i} which contains the edge e_{f} belonging to $E_{\text {del }}$. From theorem 5, all the L-edges of r_{i} are single. So, the double L-edge e_{0} cannot be contained in r_{i}. Therefore, we can obtain a Kekulé pattern belonging to K_{d} in which r_{i} is an improper ring and all other edges are unchanged. This contradicts that e_{f} is fixed in K_{d}.

Cases 1 and 2 complete the proof.

6. One-to-one correspondence between the Kekulé and sextet patterns

Here, mappings f and g are defined as follows.
$f: K_{G} \rightarrow S_{G}$: For any Kekule pattern $k \in K_{G}, f(k)$ is determined by the following procedures (figs. 9b, 12):
$f 1$. Let R be the set of all rings which are proper rings in a Kekulé pattern $k \in K_{G}$. If all components of $G-[R]$ belong to $F P$, go to $f 4$. Otherwise, put $i=1$.
$f 2$. Let $G_{i}=G-[R]$. If k has proper cycles on holes of G_{i}, add those cycles to R. Otherwise, go to $f 4$.
f3. Put $i=i+1$ and go to $f 2$.
$f 4$. For G, put a circle in each ring or cycle belonging to R.
$g: S_{G} \rightarrow K_{G}:$ For any sextet pattem $s \in S_{G}, g(s)$ is determined by the following procedures (figs. 9b, 12):
$g 1$. For G, draw proper cycles in all the rings and cycles which have circles in s.
g2. In the remaining part of G, draw a Kekule pattern so that no proper ring appears.

THEOREM 8

Let G be a free polyhex. For any $k \in K_{G}$, there exists $f(k)$ in S_{G}, and $f\left(k_{i}\right) \neq f\left(k_{j}\right)$ for $k_{i} \neq k_{j}$.

Proof

The definition of mutually resonant rings and theorem 4 ensures the existence of $f\left(k_{i}\right)$.

Fig. 12. Examples of the one-to-one correspondence between the Kekulé and sextet patterns through mappings f and g.

For k_{i}, let us denote R_{i} as the set obtained by $f 1-f 4$. Obviously, $k_{i} \neq k_{j}$ for $i \neq j$. Therefore, from theorem 7, there must be differences between R_{i} and R_{j} if $k_{i} \neq k_{j}$. This leads to the conclusion that $f\left(k_{i}\right) \neq f\left(k_{j}\right)$ for $k_{i} \neq k_{j}$.

THEOREM 9

Let G be a free polyhex. For any $s \in S_{G}$, there exists $g(s)$ in K_{G}, and $g\left(s_{i}\right) \neq g\left(s_{j}\right)$ for $s_{i} \neq s_{j}$.

Proof

From the definition of resonant rings and from theorem $4, K\left(G-\left[A_{i}\right]\right) \neq 0$, where A_{i} is the set of all rings and cycles having circles in s_{i}. From theorem 7, procedure $g 2$ is always possible, i.e. there is $g\left(s_{i}\right)$ in K_{G}. From the definition, $s_{i} \neq s_{j}$ for $i \neq j$. This means $A_{i} \neq A_{j}$ for $s_{i} \neq s_{j}$. Therefore, $g\left(s_{i}\right) \neq g\left(s_{j}\right)$ for $s_{i} \neq s_{j}$.

Theorems 8 and 9 complete the proof of the one-to-one correspondence between the Kekule and sextet pattems and relation (2). Relation (3) is easily proved by (2) and the definition of the contribution of a sextet pattern to the sextet polynomial given above.

7. Concluding remarks

In this paper, the definition of sextet patterns is derived from graph-theoretical properties of free and holed polyhexes. So, for example, we can obtain fifty sextet patterns of VIII without the list of fifty Kekule patterns of VIII (figs. 8a,b). It is straightforward to obtain all the 980 sextet patterns of S_{IX}. A sextet pattern of a graph G does not represent a Kekulé pattern, but represents some properties concerning perfect matchings of G.

The definitions of the sextet pattern and the sextet polynomial given above can be extended straightforwardly to holed polyhexes (fig. 13). The proof of the one-to-one correspondence is also valid for holed polyhexes, because theorems 4 and 7 are true for them.

X

IV

IV'

Fig. 13. Examples of sextet polynomials of holed and Kekulé polyhexes. The number in ring r_{i} denotes $K\left(G-\left(r_{i}\right)\right)$. For a holed polyhex $\mathrm{X}, S_{\mathrm{X}}=1+10 x+18 x^{2}+10 x^{3}+x^{4}$, while $K(\mathrm{X})=40$ and $\Sigma K\left(\mathrm{X}-\left(r_{i}\right)\right)=80$. Subgraph IV' of IV is obtained by deleting all the fixed edges from IV. It contains two components of free polyhexes. The sextet polynomial $S_{\mathrm{IV}}(x)$ is given as the product of sextet polynomials for components of IV^{\prime}. $S_{\mathrm{IV}}(x)=(1+2 x)^{2}=1+4 x+4 x^{2} . K(\mathrm{IV})=9$ and $\Sigma K\left(\mathrm{IV}-\left(r_{i}\right)\right)=8$.

Kekulé polyhexes with fixed edges such as IV and V in fig. 1 are considered as sets of some independent free and holed polyhexes obtained by deleting all the fixed edges. Then, the combinations of resonant rings are given as the product of these free and holed polyhexes (fig. 13). This means that theorems 8 and 9 are true for any Kekule polyhex.

XI

XII

XIII

Fig. 14. Sextet polynomials for bipartite graphs consisting only of free edges and having Kekulé patterns. The number in a ring r_{i} denotes $K\left(G-\left(r_{i}\right)\right.$). For each case, relations (2) and (3) are valid. For a square lattice graph like XIII, see ref. [11]. $S_{\mathrm{XI}}(x)=1+3 x+x^{2}$. $K(\mathrm{XI})=5$ and $\Sigma K\left(\mathrm{XI}-\left(r_{i}\right)\right)=5 . S_{\mathrm{xII}}(x)=1+6 x+2 x^{2} . K(\mathrm{XII})=9$ and $\sum K\left(\mathrm{XII}-\left(r_{i}\right)\right)=10 . S_{\mathrm{XIII}}(x)=1+10 x+16 x^{2}+8 x^{3}+x^{4} . K$ (XIII) $=36$ and $\Sigma K\left(\right.$ XIII $\left.-\left(r_{i}\right)\right)=70$.

Further, sextet patterns and the sextet polynomial can be applied to a general bipartite graph consisting only of free edges and having Kekule patterns from theorem 4 (fig. 14). The proof of relations (2) and (3) for them will be completed if the dependency on the orientation of graphs in the above discussion is removed.

Acknowledgements

The author wishes to thank Professor H. Hosoya of Ochanomizu University for his continued interest and encouragement.

References

[1] H. Wenjie and H. Wenchen, Theor. Chim. Acta 70(1986)43.
[2] H. Hosoya and T. Yamaguchi, Tetrahedron Lett. (1975) 4659.
[3] E. Clar, The Aromatic Sextets (Wiley, London, 1972).
[4] N. Ohkami, A. Motoyama, T. Yamaguchi, H. Hosoya and I. Gutman, Tetrahedron 37(1981)1113.
[5] C.L. Liu, Introduction to Combinatorial Mathematics (McGraw-Hill, New York, 1968).
[6] I. Gutman, Bull. Soc. Chim. Beograd 47(1982)453.
[7] C. Berge, Graphes et Hypergraphes (Durod, Paris, 1971) [English translation: Graphs and Hypergraphs (Elsevier, New York, 1973)].
[8] J. Edmonds, Natl. Bur. Std. Rept. (1964) 449.
[9] N. Ohkami and H. Hosoya, Theor. Chim. Acta 64(1983)153.
[10] N. Ohkami and H. Hosoya, Natl. Sci. Rept. Ochanomizu University 35(1984)71.
[11] A. Motoyama and H. Hosoya, J. Math. Phys. 18(1977)1485.

[^0]: * A part of this paper depends on the doctoral thesis of the author.
 *Present address: Tokyo Metropolitan Institute of Medical Science, 3-18-22 Hon-Komagome, Bunkyo-ku, Tokyo 113, Japan.

